that they can be different. Clean up mkfs, simplifying specifying fs parameters,
remove some redundancy between fs and mkfs, and fix disk layout bugs. Call blocks
in the file system blocks instead of sectors. Passes usertests for different
block sizes.
#include "defs.h"
#include "param.h"
#include "spinlock.h"
+#include "fs.h"
#include "buf.h"
struct {
}
}
-// Look through buffer cache for sector on device dev.
+// Look through buffer cache for block on device dev.
// If not found, allocate a buffer.
// In either case, return B_BUSY buffer.
static struct buf*
-bget(uint dev, uint sector)
+bget(uint dev, uint blockno)
{
struct buf *b;
acquire(&bcache.lock);
loop:
- // Is the sector already cached?
+ // Is the block already cached?
for(b = bcache.head.next; b != &bcache.head; b = b->next){
- if(b->dev == dev && b->sector == sector){
+ if(b->dev == dev && b->blockno == blockno){
if(!(b->flags & B_BUSY)){
b->flags |= B_BUSY;
release(&bcache.lock);
for(b = bcache.head.prev; b != &bcache.head; b = b->prev){
if((b->flags & B_BUSY) == 0 && (b->flags & B_DIRTY) == 0){
b->dev = dev;
- b->sector = sector;
+ b->blockno = blockno;
b->flags = B_BUSY;
release(&bcache.lock);
return b;
panic("bget: no buffers");
}
-// Return a B_BUSY buf with the contents of the indicated disk sector.
+// Return a B_BUSY buf with the contents of the indicated block.
struct buf*
-bread(uint dev, uint sector)
+bread(uint dev, uint blockno)
{
struct buf *b;
- b = bget(dev, sector);
- if(!(b->flags & B_VALID))
+ b = bget(dev, blockno);
+ if(!(b->flags & B_VALID)) {
iderw(b);
+ }
return b;
}
// Boot loader.
//
-// Part of the boot sector, along with bootasm.S, which calls bootmain().
+// Part of the boot block, along with bootasm.S, which calls bootmain().
// bootasm.S has put the processor into protected 32-bit mode.
// bootmain() loads an ELF kernel image from the disk starting at
// sector 1 and then jumps to the kernel entry routine.
struct buf {
int flags;
uint dev;
- uint sector;
+ uint blockno;
struct buf *prev; // LRU cache list
struct buf *next;
struct buf *qnext; // disk queue
- uchar data[512];
+ uchar data[BSIZE];
};
#define B_BUSY 0x1 // buffer is locked by some process
#define B_VALID 0x2 // buffer has been read from disk
#include "mmu.h"
#include "proc.h"
#include "spinlock.h"
-#include "buf.h"
#include "fs.h"
+#include "buf.h"
#include "file.h"
#define min(a, b) ((a) < (b) ? (a) : (b))
// Then sb.nlog log blocks.
#define ROOTINO 1 // root i-number
-#define BSIZE 512 // block size
+#define BSIZE 1024 // block size
// File system super block
struct superblock {
#include "x86.h"
#include "traps.h"
#include "spinlock.h"
+#include "fs.h"
#include "buf.h"
+#define SECTOR_SIZE 512
#define IDE_BSY 0x80
#define IDE_DRDY 0x40
#define IDE_DF 0x20
{
if(b == 0)
panic("idestart");
+ int sector_per_block = BSIZE/SECTOR_SIZE;
+ int sector = b->blockno * sector_per_block;
+ if (sector_per_block > 7) panic("idestart");
+
idewait(0);
outb(0x3f6, 0); // generate interrupt
- outb(0x1f2, 1); // number of sectors
- outb(0x1f3, b->sector & 0xff);
- outb(0x1f4, (b->sector >> 8) & 0xff);
- outb(0x1f5, (b->sector >> 16) & 0xff);
- outb(0x1f6, 0xe0 | ((b->dev&1)<<4) | ((b->sector>>24)&0x0f));
+ outb(0x1f2, sector_per_block); // number of sectors
+ outb(0x1f3, sector & 0xff);
+ outb(0x1f4, (sector >> 8) & 0xff);
+ outb(0x1f5, (sector >> 16) & 0xff);
+ outb(0x1f6, 0xe0 | ((b->dev&1)<<4) | ((sector>>24)&0x0f));
if(b->flags & B_DIRTY){
outb(0x1f7, IDE_CMD_WRITE);
- outsl(0x1f0, b->data, 512/4);
+ outsl(0x1f0, b->data, BSIZE/4);
} else {
outb(0x1f7, IDE_CMD_READ);
}
// Read data if needed.
if(!(b->flags & B_DIRTY) && idewait(1) >= 0)
- insl(0x1f0, b->data, 512/4);
+ insl(0x1f0, b->data, BSIZE/4);
// Wake process waiting for this buf.
b->flags |= B_VALID;
{
int i;
- if(argc < 1){
+ if(argc < 2){
printf(2, "usage: kill pid...\n");
exit();
}
//
// The log is a physical re-do log containing disk blocks.
// The on-disk log format:
-// header block, containing sector #s for block A, B, C, ...
+// header block, containing block #s for block A, B, C, ...
// block A
// block B
// block C
// Log appends are synchronous.
// Contents of the header block, used for both the on-disk header block
-// and to keep track in memory of logged sector #s before commit.
+// and to keep track in memory of logged block# before commit.
struct logheader {
int n;
- int sector[LOGSIZE];
+ int block[LOGSIZE];
};
struct log {
for (tail = 0; tail < log.lh.n; tail++) {
struct buf *lbuf = bread(log.dev, log.start+tail+1); // read log block
- struct buf *dbuf = bread(log.dev, log.lh.sector[tail]); // read dst
+ struct buf *dbuf = bread(log.dev, log.lh.block[tail]); // read dst
memmove(dbuf->data, lbuf->data, BSIZE); // copy block to dst
bwrite(dbuf); // write dst to disk
brelse(lbuf);
int i;
log.lh.n = lh->n;
for (i = 0; i < log.lh.n; i++) {
- log.lh.sector[i] = lh->sector[i];
+ log.lh.block[i] = lh->block[i];
}
brelse(buf);
}
int i;
hb->n = log.lh.n;
for (i = 0; i < log.lh.n; i++) {
- hb->sector[i] = log.lh.sector[i];
+ hb->block[i] = log.lh.block[i];
}
bwrite(buf);
brelse(buf);
for (tail = 0; tail < log.lh.n; tail++) {
struct buf *to = bread(log.dev, log.start+tail+1); // log block
- struct buf *from = bread(log.dev, log.lh.sector[tail]); // cache block
+ struct buf *from = bread(log.dev, log.lh.block[tail]); // cache block
memmove(to->data, from->data, BSIZE);
bwrite(to); // write the log
brelse(from);
acquire(&log.lock);
for (i = 0; i < log.lh.n; i++) {
- if (log.lh.sector[i] == b->sector) // log absorbtion
+ if (log.lh.block[i] == b->blockno) // log absorbtion
break;
}
- log.lh.sector[i] = b->sector;
+ log.lh.block[i] = b->blockno;
if (i == log.lh.n)
log.lh.n++;
b->flags |= B_DIRTY; // prevent eviction
ideinit(void)
{
memdisk = _binary_fs_img_start;
- disksize = (uint)_binary_fs_img_size/512;
+ disksize = (uint)_binary_fs_img_size/BSIZE;
}
// Interrupt handler.
panic("iderw: nothing to do");
if(b->dev != 1)
panic("iderw: request not for disk 1");
- if(b->sector >= disksize)
- panic("iderw: sector out of range");
+ if(b->block >= disksize)
+ panic("iderw: block out of range");
- p = memdisk + b->sector*512;
+ p = memdisk + b->block*BSIZE;
if(b->flags & B_DIRTY){
b->flags &= ~B_DIRTY;
- memmove(p, b->data, 512);
+ memmove(p, b->data, BSIZE);
} else
- memmove(b->data, p, 512);
+ memmove(b->data, p, BSIZE);
b->flags |= B_VALID;
}
#define static_assert(a, b) do { switch (0) case 0: case (a): ; } while (0)
-int nblocks = (995-LOGSIZE);
-int nlog = LOGSIZE;
-int ninodes = 200;
-int size = 1024;
+#define SIZE 1000
+#define NINODES 200
+
+// Disk layout:
+// [ boot block | sb block | inode blocks | bit map | data blocks | log ]
+
+int nbitmap = SIZE/(BSIZE*8) + 1;
+int ninodeblocks = NINODES / IPB + 1;
+int nlog = LOGSIZE;
+int nmeta; // Number of meta blocks (inode, bitmap, and 2 extra)
+int nblocks; // Number of data blocks
int fsfd;
struct superblock sb;
-char zeroes[512];
-uint freeblock;
-uint usedblocks;
-uint bitblocks;
+char zeroes[BSIZE];
uint freeinode = 1;
+uint freeblock;
+
void balloc(int);
void wsect(uint, void*);
int i, cc, fd;
uint rootino, inum, off;
struct dirent de;
- char buf[512];
+ char buf[BSIZE];
struct dinode din;
exit(1);
}
- assert((512 % sizeof(struct dinode)) == 0);
- assert((512 % sizeof(struct dirent)) == 0);
+ assert((BSIZE % sizeof(struct dinode)) == 0);
+ assert((BSIZE % sizeof(struct dirent)) == 0);
fsfd = open(argv[1], O_RDWR|O_CREAT|O_TRUNC, 0666);
if(fsfd < 0){
exit(1);
}
- sb.size = xint(size);
+ nmeta = 2 + ninodeblocks + nbitmap;
+ nblocks = SIZE - nlog - nmeta;
+
+ sb.size = xint(SIZE);
sb.nblocks = xint(nblocks); // so whole disk is size sectors
- sb.ninodes = xint(ninodes);
+ sb.ninodes = xint(NINODES);
sb.nlog = xint(nlog);
- bitblocks = size/(512*8) + 1;
- usedblocks = ninodes / IPB + 3 + bitblocks;
- freeblock = usedblocks;
+ printf("nmeta %d (boot, super, inode blocks %u, bitmap blocks %u) blocks %d log %u total %d\n", nmeta, ninodeblocks, nbitmap, nblocks, nlog, SIZE);
- printf("used %d (bit %d ninode %zu) free %u log %u total %d\n", usedblocks,
- bitblocks, ninodes/IPB + 1, freeblock, nlog, nblocks+usedblocks+nlog);
+ freeblock = nmeta; // the first free block that we can allocate
- assert(nblocks + usedblocks + nlog == size);
-
- for(i = 0; i < nblocks + usedblocks + nlog; i++)
+ for(i = 0; i < SIZE; i++)
wsect(i, zeroes);
memset(buf, 0, sizeof(buf));
din.size = xint(off);
winode(rootino, &din);
- balloc(usedblocks);
+ balloc(freeblock);
exit(0);
}
void
wsect(uint sec, void *buf)
{
- if(lseek(fsfd, sec * 512L, 0) != sec * 512L){
+ printf("seek to %d\n", sec * BSIZE);
+ if(lseek(fsfd, sec * BSIZE, 0) != sec * BSIZE){
perror("lseek");
exit(1);
}
- if(write(fsfd, buf, 512) != 512){
+ if(write(fsfd, buf, BSIZE) != BSIZE){
perror("write");
exit(1);
}
}
-uint
-i2b(uint inum)
-{
- return (inum / IPB) + 2;
-}
-
void
winode(uint inum, struct dinode *ip)
{
- char buf[512];
+ char buf[BSIZE];
uint bn;
struct dinode *dip;
- bn = i2b(inum);
+ bn = IBLOCK(inum);
+ printf("winode %d\n", bn);
rsect(bn, buf);
dip = ((struct dinode*)buf) + (inum % IPB);
*dip = *ip;
void
rinode(uint inum, struct dinode *ip)
{
- char buf[512];
+ char buf[BSIZE];
uint bn;
struct dinode *dip;
- bn = i2b(inum);
+ bn = IBLOCK(inum);
rsect(bn, buf);
dip = ((struct dinode*)buf) + (inum % IPB);
*ip = *dip;
void
rsect(uint sec, void *buf)
{
- if(lseek(fsfd, sec * 512L, 0) != sec * 512L){
+ if(lseek(fsfd, sec * BSIZE, 0) != sec * BSIZE){
perror("lseek");
exit(1);
}
- if(read(fsfd, buf, 512) != 512){
+ if(read(fsfd, buf, BSIZE) != BSIZE){
perror("read");
exit(1);
}
void
balloc(int used)
{
- uchar buf[512];
+ uchar buf[BSIZE];
int i;
printf("balloc: first %d blocks have been allocated\n", used);
- assert(used < 512*8);
- bzero(buf, 512);
+ assert(used < BSIZE*8);
+ bzero(buf, BSIZE);
for(i = 0; i < used; i++){
buf[i/8] = buf[i/8] | (0x1 << (i%8));
}
- printf("balloc: write bitmap block at sector %zu\n", ninodes/IPB + 3);
- wsect(ninodes / IPB + 3, buf);
+ printf("balloc: write bitmap block at sector %d\n", ninodeblocks+2);
+ wsect(ninodeblocks+2, buf);
}
#define min(a, b) ((a) < (b) ? (a) : (b))
char *p = (char*)xp;
uint fbn, off, n1;
struct dinode din;
- char buf[512];
+ char buf[BSIZE];
uint indirect[NINDIRECT];
uint x;
off = xint(din.size);
while(n > 0){
- fbn = off / 512;
+ fbn = off / BSIZE;
assert(fbn < MAXFILE);
if(fbn < NDIRECT){
if(xint(din.addrs[fbn]) == 0){
din.addrs[fbn] = xint(freeblock++);
- usedblocks++;
}
x = xint(din.addrs[fbn]);
} else {
if(xint(din.addrs[NDIRECT]) == 0){
// printf("allocate indirect block\n");
din.addrs[NDIRECT] = xint(freeblock++);
- usedblocks++;
}
// printf("read indirect block\n");
rsect(xint(din.addrs[NDIRECT]), (char*)indirect);
if(indirect[fbn - NDIRECT] == 0){
indirect[fbn - NDIRECT] = xint(freeblock++);
- usedblocks++;
wsect(xint(din.addrs[NDIRECT]), (char*)indirect);
}
x = xint(indirect[fbn-NDIRECT]);
}
- n1 = min(n, (fbn + 1) * 512 - off);
+ n1 = min(n, (fbn + 1) * BSIZE - off);
rsect(x, buf);
- bcopy(p, buf + off - (fbn * 512), n1);
+ bcopy(p, buf + off - (fbn * BSIZE), n1);
wsect(x, buf);
n -= n1;
off += n1;
#define ROOTDEV 1 // device number of file system root disk
#define MAXARG 32 // max exec arguments
#define MAXOPBLOCKS 10 // max # of blocks any FS op writes
-#define LOGSIZE (MAXOPBLOCKS*3) // max data sectors in on-disk log
+#define LOGSIZE (MAXOPBLOCKS*3) // max data blocks in on-disk log
#define NBUF (MAXOPBLOCKS*3) // size of disk block cache